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The model equation

2
15
riv − br′′ + ar + 3

2
r2 − 1

2
(r′)2 + [rr′]′ = 0

arises as the equation for solitary-wave solutions to a fifth-order long-wave equation
for gravity–capillary water waves. Being Hamiltonian, reversible and depending
upon two parameters, it shares the structure of the full steady water-wave problem.
Moreover, all known analytical results for local bifurcations of solitary-wave solutions
to the full water-wave problem have precise counterparts for the model equation.

At the time of writing two major open problems for steady water waves are
attracting particular attention. The first concerns the possible existence of solitary
waves of elevation as local bifurcation phenomena in a particular parameter regime;
the second, larger, issue is the determination of the global bifurcation picture for
solitary waves. Given that the above equation is a good model for solitary waves
of depression, it seems natural to study the above issues for this equation; they are
comprehensively treated in this article.

The equation is found to have branches of solitary waves of elevation bifurcating
from the trivial solution in the appropriate parameter regime, one of which is described
by an explicit solution. Numerical and analytical investigations reveal a rich global
bifurcation picture including multi-modal solitary waves of elevation and depression
together with interactions between the two types of wave. There are also new orbit-flip
bifurcations and associated multi-crested solitary waves with non-oscillatory tails.

1. Introduction
This article is concerned with homoclinic orbits of the fourth-order ordinary

differential equation

2
15
riv − br′′ + ar + 3

2
r2 − 1

2
(r′)2 + [rr′]′ = 0, (1.1)

in which a and b are real parameters. (In this paper ‘homoclinic’ always means
‘homoclinic to the origin’.) These orbits represent solitary-wave solutions of the
fifth-order equation

rt + 2
15
rxxxxx − brxxx + 3rrx + 2rxrxx + rrxxx = 0 (1.2)

which travel with velocity −a. Equation (1.2) arises as a weakly nonlinear long-
wave approximation to the classical gravity–capillary water-wave problem, the full
formulation of which depends upon the dimensionless quantities α = gh/c2 and
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Figure 1. Eigenvalues in (b, a)-parameter space. The number of purely imaginary eigenvalues
changes at C2 = {(b, a) : a = 15b2/8, b < 0}, C3 = {(b, 0) : b < 0}, C4 = {(b, 0) : b > 0}; at
C1 = {(b, a) : a = 15b2/8, b > 0} non-zero, real eigenvalues become complex without passing
through zero. Dots and crosses denote respectively simple and double eigenvalues. The parameter
regimes S1, S2, S3, S4 referred to in the text are the shaded regions near C1, C2, C3, C4, and C and
R are the regions respectively above C1 ∪ C2 and to the right of C1 ∪ C4.

β = σ/hc2. Here g is the acceleration due to gravity, h is the depth of the water in its
undisturbed state, c is the speed of the wave and σ is the coefficient of surface tension
(e.g. see Kirchgässner 1988). The long-wave approximation is derived by introducing
small parameters ε and µ, which represent respectively a characteristic amplitude and
wavenumber, writing ε = µ2, α−1 = aµ2, β−1/3 = b and retaining terms up to O(µ7)
in a formal power-series expansion of the equations of motion (see Craig & Groves
1994 for a modern discussion of this approach). Although the formal derivation of
(1.1) involves the assumption that b is not small (see Zufiria 1987, p. 187), equation
(1.1) is of interest in its own right for all values of a and b and is here studied from
this point of view.

The steady water-wave problem may be formulated as a reversible, infinite-
dimensional, Hamiltonian dynamical system which depends upon the parameters
α and β (Kirchgässner 1988; Iooss 1995; Groves & Toland 1997). Equation (1.1) has
a similar structure: introducing real-valued variables

q1 = r, q2 = r′, p1 = − 2
15
r′′′ + br′ − rr′, p2 = 2

15
r′′,

one may write it as the Hamiltonian system with energy

H = − 1
2
q3

1 − 1
2
aq2

1 + p1q2 − 1
2
bq2

2 + 15
4
p2

2 + 1
2
q2

2q1, (1.3)

which is reversible under the transformation t 7→ −t, (q1, q2, p1, p2) 7→ (q1,−q2,−p1, p2).
Let us now observe a further similarity between the two problems. The four

eigenvalues λ of the linearization of the Hamiltonian system corresponding to (1.3)
satisfy the equation

2
15
λ4 − bλ2 + a = 0;

figure 1 shows how they depend upon the parameters a and b. Four eigenvalues in
the countably infinite set of eigenvalues of the linearized steady water-wave problem
depend upon α and β in a manner which is qualitatively similar to that shown in
figure 1 (see Kirchgässner 1988, figure 1).
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Local bifurcation phenomena for the full steady water-wave problem have been
studied in the parameter regimes corresponding to those in figure 1. Amick &
Kirchgässner (1989) studied the region corresponding to S4 and found a unique
small-amplitude solitary wave. This wave is a symmetric solitary wave of depression
that decays exponentially and monotonically to zero at infinity, and corresponds to the
wave found by Korteweg & deVries (1895) in the same parameter regime (Benjamin
1982). The region corresponding to S2 was considered by Iooss & Kirchgässner (1990),
Dias & Iooss (1993) and Iooss & Pérouème (1993). The combined work of these
papers proves the existence of two modulated solitary waves whose envelopes are
symmetric and decay exponentially to zero at infinity. The dominant feature of one
wave is its central crest, while the dominant feature of the other is its central trough.
This result has recently been considerably strengthened by Buffoni & Groves (1996),
who showed that there are infinitely many geometrically distinct solitary waves in the
parameter region S3. Finally, Buffoni, Groves & Toland (1996b) considered the region
corresponding to S1 and showed that there are also infinitely many distinct solitary-
wave solutions here. These multi-modal solutions are waves of depression which have
an arbitrary but finite number of troughs, between which there are distributed smaller
maxima and minima, and which have an exponentially decaying oscillatory tail at
infinity. Section 2 below describes for the first time how analogous results may be
obtained for the model equation (1.1).

Let us briefly mention the simpler equation

2
15
riv − br′′ + ar + 3

2
r2 = 0, (1.4)

which is equivalent to the model equation studied by Zufiria (1987, equation (18)).
This equation is obtained by introducing the scaled variables

r̃ =
r

ε4
, t̃ = εt, ã =

a

ε4
, b̃ =

b

ε2
, (1.5)

so that (1.1) becomes

2
15
riv − br′′ + ar + 3

2
r2 − 1

2
ε2(r′)2 + ε2[rr′]′ = 0, (1.6)

and taking the limit ε→ 0. Equation (1.4) is in fact equivalent to two one-parameter
equations. Focusing on the case a 6= 0 and introducing the further transformation

u(T ) = − 3

2|a|r(t), T =

(
15|a|

2

)1/4

t, (1.7)

one finds that u satisfies one of the equations

uiv + P ü+ u− u2 = 0, (1.8)

uiv + P ü− u− u2 = 0, (1.9)

in which P = −b(15/2|a|)1/2, the dot denotes differentiation with respect to T and
the equation is chosen so that the sign of the third term matches the sign of a. The
curves C1 and C2 in figure 1 correspond respectively to P = −2 and P = 2 in (1.8),
and the curves C3 and C4 correspond respectively to the limits P → ±∞ in (1.8),
(1.9). Bifurcation phenomena associated with equation (1.4) are therefore at most of
codimension one. One must therefore add extra nonlinear terms to (1.4) to obtain an
equation which is genuinely dependent upon two parameters; the O(ε2) terms in (1.6)
serve this purpose. Sections 3, 4 and 5 of the present paper are devoted to a global
investigation of solitary-wave solutions to equation (1.1) as the two parameters a and
b are varied; the main conclusions are presented in figure 26.
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Section 3.1 contains an existence proof which shows that there is at least one
solitary-wave solution in the parameter region C ∪ R and verifies the hypotheses
required to apply the theory of Buffoni & Séré (1996), which asserts the existence
of infinitely many solutions in the region C. Numerically, these solutions are char-
acterized as multi-modal waves of depression; their global bifurcation behaviour is
investigated in §3.2. The numerical techniques used here, and throughout the remain-
der of the paper, are based upon a shooting method and continuation of solutions
to a suitably truncated two-point boundary-value problem with the software package
auto (Doedel & Kernevez 1986; Doedel, Keller & Kernevez 1991). The methods
are robust and have been described in detail elsewhere (see Buffoni, Champneys &
Toland 1996a; Champneys & Spence 1993 and the references therein).

In §4 attention is turned to the region S3 in figure 1. The possibility of solitary-wave
solutions to the full water-wave problem in the corresponding parameter regime was
considered independently by Beale (1991) and Sun (1991) and elaborated upon by
several others, notably Iooss & Kirchgässner (1992). These authors established the
existence of generalized solitary-wave solutions, that is solutions homoclinic to periodic
orbits. At the time of writing it remains unknown whether there are true solitary-
wave solutions of the water-wave problem (solutions homoclinic to the origin) for the
above parameter values. (Note however that Lombardi (1995) has shown that there
are generalized solitary waves which decay at infinity to an oscillation of exponentially
small amplitude.) For the model equation (1.1), numerical experiments presented in §4
indicate that a countable number of branches of solitary waves of elevation bifurcate
from the trivial solution along the curve C3 at the points (b−n , 0), n = 1, 2, . . ., where
0 > b−1 > b−2 > · · ·. In fact the first branch is given by explicit formulae; the solution
on this branch is an exact solution with the classical sech2 profile. The solutions on
the other branches have the same basic profile with an increasing number of small
oscillations superimposed.

Section 5 examines global consequences of the existence of these branches of solitary
waves of elevation. The branches all reach a turning point and enter the region a > 0
at (b+

n , 0), where 0 < b+
1 < b+

2 < · · ·. In the region R they do not represent isolated
solution curves but rather curves of solutions whose tails have a faster than expected
exponential decay rate. Upon crossing such a curve in the parameter plane, one finds
that solitary-wave solutions undergo an orbit-flip bifurcation. Various consequences
of the orbit flip are examined: there is interaction between waves of elevation and
depression; one can find infinitely many multi-modal waves of elevation in the region
C; and, most startlingly, there are countably infinite families of multi-crested solitary
waves in the region R, where the eigenvalues are real.

2. Local bifurcation phenomena
2.1. The Korteweg–deVries solitary wave of depression

Take b > 0 and a = µ, where µ is a small positive number with µ < 15b2/8 (the region
S4 in figure 1), so that the linearized version of the Hamiltonian system corresponding
to (1.3) has four real eigenvalues. When µ = 0 there are two simple eigenvalues
−(15b/2)1/2, (15b/2)1/2 with eigenvectors v3, v4 and a zero eigenvalue of geometric
multiplicity 1 and algebraic multiplicity 2 with generalized eigenvectors v1, v2; here

v1 =

 1
0
0
0

 , v2 =

 0
1
b
0

 , v3 =

 1/b
−(15/2b)1/2

0
1

 , v4 =

 1/b
(15/2b)1/2

0
1

 .
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In terms of the new variables x1, x2, y1, y2 given by

(q1, q2, p1, p2)
T = x1v1 + x2v2 + y1v3 + y2v4,

one finds that the system becomes

x′1 = x2 +
x1x2

b
+ O(|(y1, y2)||(x1, x2, y1, y2)|), (2.1)

x′2 =
µx1

b
+

3x2
1

2b
− x2

2

2b
+ O(|(y1, y2)||(µ, x1, x2, y1, y2)|), (2.2)

y′1 = −
(
15b/2

)1/2
y1 + O(|(x1, x2, y1, y2)||(µ, x1, x2, y1, y2)|), (2.3)

y′2 =
(
15b/2

)1/2
y2 + O(|(x1, x2, y1, y2)||(µ, x1, x2, y1, y2)|) (2.4)

as (µ, x1, x2, y1, y2)→ 0.
One may now use the centre-manifold reduction theorem for ordinary differential

equations (see Iooss & Adelmeyer 1992), which asserts that for sufficiently small
values of µ all small, bounded solutions of (2.1), (2.2), (2.3), (2.4) lie on a locally
invariant, two-dimensional centre manifold

M
µ
C = {(x1, x2, y1, y2) : (y1, y2) = h(µ, x1, x2)},

where h(µ, x1, x2) = O(|(x1, x2)||(µ, x1, x2)|) as (µ, x1, x2)→ 0. Moreover, every solution
of the reduced system obtained by writing (y1, y2) = h(µ, x1, x2) in (2.1), (2.2) generates
a solution (x1, x2, h(µ, x1, x2))(t) of (2.1), (2.2), (2.3), (2.4). After the further change of
variables

X1(T ) =
x1(t)

µ
, X2(T ) =

b1/2x2(t)

µ3/2
, T =

µ1/2t

b1/2
,

this reduced system is found to be

Ẋ1 = X2 + O(µ), (2.5)

Ẋ2 = X1 + 3
2
X2

1 + O(µ) (2.6)

as µ→ 0, in which a dot denotes differentiation with respect to T . It is a feature of the
centre-manifold reduction that the reduced equations inherit the reversibility of the
original dynamical system (Iooss & Adelmeyer 1992, §I.1.4), so that (2.5), (2.6) are re-
versible under the transformation T → −T , X1 → X1, X2 → −X2. In the limit µ→ 0,
the system (2.5), (2.6) is equivalent to an ordinary differential equation for X1, namely

Ẍ1 = X1 + 3
2
X2

1 ,

which has the unique solitary-wave solution

X1 = −sech2
(

1
2
T
)
.

This solution is a symmetric solitary wave of depression that decays monotonically
and exponentially to zero as T → ±∞. A straightforward application of the implicit-
function theorem (cf. Kirchgässner 1988, Proposition 5.1) shows that the solution
persists for small positive values of µ, in the sense that equations (2.5), (2.6), with
any reversible O(µ) remainder terms, admit a solitary-wave solution X1(µ, T ) with the
same properties.

2.2. Envelope solitary waves

Take b = −d, a = 15d2/8 + µ, where d is a positive real number and µ is small and
positive (the region S2 in figure 1), so that the linearized version of the Hamiltonian



204 A. R. Champneys and M. D. Groves

system corresponding to (1.3) has four complex eigenvalues. When µ = 0 there are
two eigenvalues ±i(15d/4)1/2 of geometric multiplicity 1 and algebraic multiplicity 2.
The generalized eigenvectors are v1, v2 and v̄1, v̄2, where

v1 =


−(1/2d)1/2

−i(15/8)1/2

i(15d2/32)1/2

(d/8)1/2

 , v2 =


−i(1/30d2)1/2

−(1/8d)1/2

−(9d/32)1/2

−i(3/40)1/2

 .

Writing (q1, q2, p1, p2)
T = z1v1 +z2v2 + z̄1v̄1 + z̄2v̄2, one obtains the Hamiltonian system

z′1 =
∂H

∂z̄2

, z̄′1 =
∂H

∂z2

, z′2 = −∂H
∂z̄1

, z̄′2 = −∂H
∂z1

, (2.7)

where H is the original Hamiltonian expressed in terms of the variables z1, z2, z̄1, z̄2.
The next step is the use of normal-form theory developed by Elphick et al. (1987)

and extended to Hamiltonian systems by Meyer & Hall (1992, Chap. VII). In the
present setting, the theory states that there is a near identity, symplectic change of
variable

z = Z +Θ(Z, µ),

where Θ is a polynomial of degree n > 2 in the variable (Z, µ) with the property that
the transformed Hamiltonian takes the form

H̃ = 1
2
i(15d)1/2(B̄A− ĀB) + BB̄ +

n+1∑
j=3

H̃j(Z, µ) + O(|Z |2|(µ, Z)|n)

as (Z, µ) → 0. Here A, B, Ā, B̄ are the components of Z and the functions H̃j ,
j = 3, . . . , n+ 1 are polynomials which are homogeneous of degree j in (Z, µ) and are
also real polynomial functions of AĀ and i(AB̄ − ĀB) with coefficients that depend
upon µ. Moreover H̃j(0, µ) = 0.

The above theory with n = 3 asserts that the transformed Hamiltonian is

H = 1
2
i(15d)1/2(B̄A− ĀB) + BB̄ + µc1AĀ+ µic2AB̄ − µic2ĀB

+c3A
2Ā2 + ic4A

2ĀB̄ − ic4AĀ
2B − c5A

2B̄2 + 2c5AĀBB̄ − c5Ā
2B2

+µ2c6AĀ+ µ2ic7AB̄ − µ2ic7ĀB + O(|Z |2|(µ, Z)|3)

as (µ, Z)→ 0, where c1, . . . , c7 are real constants. The theory below depends crucially
on c1 and c3, which are readily obtained by directly computing the quadratic and
cubic terms in Θ (see Iooss & Adelmeyer 1992). One finds that

c1 =
−1

2d
, c3 =

19

30d4
− 7

4d3
+

45

32d2
;

observe that c1 is negative and c3 is positive for all positive values of d.
Making the change of variables

A(t) = µ1/2Ã(t̃) exp(i(15d/4)1/2t), B(t) = µB̃(t̃) exp(i(15d/4)1/2t), t̃ = µ1/2t

in Hamilton’s equations one obtains the system

˙̃A = B̃ + O(µ1/2), (2.8)
˙̃B = −c1Ã− 2c3Ã|Ã|2 + O(µ1/2) (2.9)

as µ → 0. In the limit µ → 0, this system is equivalent to an ordinary differential
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(a) (b)

Figure 2. (a) Sketch of the envelope solitary wave of elevation; (b) sketch of the envelope solitary
wave of depression.

equation for A, namely

¨̃A = −c1Ã− 2c3Ã|Ã|2,
which has the family {Ãθ(t), θ ∈ [0, 2π)} of homoclinic solutions, where

Ãθ(t̃) = (−c1/c3)
1/2sech((−c1)

1/2t̃) exp(iθ).

Two of these homoclinic solutions, namely Ã0(t̃) and Ãπ(t̃), are symmetric; they are
respectively positive and negative functions of t that decay exponentially to zero as
t̃ → ∞. An argument given by Iooss & Pérouème (1993, §IV.3) shows that both
solutions persist for small positive values of µ, in the sense that equations (2.8), (2.9),
with any O(µ1/2) remainder terms that are reversible under the transformation t→ −t,
(Ã, B̃, ¯̃A, ¯̃B) → ( ¯̃A,− ¯̃B, Ã,−B̃), admit two homoclinic solutions Ã0(µ, t̃), Ãπ(µ, t̃) with
the same properties. The corresponding solutions of the model equation (1.1) are
modulated solitary waves whose envelopes are symmetric and decay exponentially
to zero at infinity. The dominant feature of one wave is its central crest, while the
dominant feature of the other is its central trough; the waves are therefore termed
envelope solitary waves of elevation and depression. They are sketched in figure 2.

2.3. A plethora of solitary waves of depression

Let us now consider the region of parameter space just to the right of the curve
corresponding to C1 in figure 1 and near and to the right of the point corresponding
to (b, a) = (0, 0) (the region S1 in figure 1). Write

b = − 2
15
Pµ2, a = 2

15
µ4,

where µ and P are real numbers and µ is small; the curve C1 corresponds to P = −2.
Introducing scaled variables

Q1(T ) =
1

µ4
q1(t), Q2(T ) =

1

µ5
q2(t), P1(T ) =

1

µ7
p1(t), P2(T ) =

1

µ6
p2(t), T = µt,

observe that the Hamiltonian system corresponding to (1.3) is transformed into the
Hamiltonian system 

Q̇1

Q̇2

Ṗ 1

Ṗ 2

 =


Q2

15
2
P2

3
2
Q2

1 + 2
15
Q1

−P1 − 2
15
PQ2

+ O(µ2) (2.10)

as µ→ 0, where the dot denotes differentiation with respect to T . In the limit µ→ 0
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the system (2.10 is equivalent to an ordinary differential equation for Q1, namely

Qiv
1 + PQ̈1 + Q1 + 45

4
Q2

1 = 0.

Writing u = −45Q1/4, one finds that u satisfies equation (1.8).
Equation (1.8), which also arises as a model for nonlinear buckling of struts (Hunt,

Bolt & Thompson 1989; Hunt & Wadee 1991), has been the subject of much re-
cent study (see Amick & Toland 1992a,b; Iooss 1992; Champneys & Toland 1993;
Buffoni 1993, 1995, 1996; Buffoni et al. 1996a; Buffoni & Séré 1996 and the ref-
erences therein); the following results are of particular importance to the present
investigation. Buffoni et al. (1996a, §2) showed that for P ∈ (−∞,−2] equation
(1.8) has a positive, symmetric homoclinic solution which decays exponentially and
monotonically to zero as T → ±∞ and is the transverse intersection (relative to the
zero-energy surface) of the stable and unstable manifolds of the zero equilibrium.
Since transversality is an open condition, it follows that the same is true of the system
(2.10) for P ∈ (−2,−2 + ε1) and sufficiently small µ, ε1. With these values of P and µ,
the system (2.10) is a four-dimensional Hamiltonian system which has four complex
eigenvalues in its linearization and the work of Devaney (1976) therefore implies that
there is a Smale horseshoe in the dynamics within the zero-energy surface. More
specifically, there is a Poincaré map that has an invariant Cantor set upon which it
is topologically conjugate to a full shift on a countably infinite set of symbols (see
Wiggins 1988, pp. 275–286). Implicit in this construction is the existence of infinitely
many homoclinic orbits which pass several times through a neighbourhood of the
primary homoclinic orbit (see Belyakov & Shilnikov 1990). Consequently there are
infinitely many distinct homoclinic solutions of (2.10) and hence of (1.1).

The homoclinic solutions of (1.8) are waves of elevation which have an arbitrary but
finite number of large crests, between which there are distributed smaller local maxima
and minima, and which have an exponentially decaying oscillatory tail at infinity.
The set H of homoclinic orbits of (1.8) is divided into an infinite number of classes,
each of which contains infinitely many distinct homoclinic solutions; the classes are
characterized by the modality, that is the number of large crests, of their members and
the waves within each class are classified by the number of small oscillations between
their large crests. Using notation first introduced by Champneys & Toland (1993),
one may assign a label n(`1, . . . , `n−1) to each homoclinic solution inH. The solution
labelled n(`1, . . . , `n−1) has modality n and the numbers `k , k = 1, . . . , n − 1, identify
the solution within its class: it has 2[`k/2] zeros and 2[(`k − 1)/2] + 1 local extrema
between the kth and (k + 1)th crests. (Here [·] denotes the integer part of a real
number.) The uni-modal solution 1() is termed the primary homoclinic solution. The
homoclinic solutions of (2.10) and hence of (1.1) in the present parameter regime are
classified in the same fashion. Notice, however, that they are waves of depression
rather than elevation.

3. Solitary waves of depression – global phenomena
Before embarking upon an investigation of the global properties of solutions to

(1.1) in the region C, let us briefly summarize analogous results for the simpler
equation (1.8) in the corresponding parameter region (P ∈ (−2, 2)).

The global bifurcation picture of homoclinic solutions to (1.8) for P ∈ (−2, 2) has
been studied analytically and numerically. Buffoni (1995) deduced that it admits in-
finitely many homoclinic solutions for each P ∈ (−2, 2). Buffoni et al. (1996a) carried
out extensive numerical investigations of equation (1.8) for P ∈ (−2, 2) and found
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that of all the branches of homoclinic solutions bifurcating at P = −2, only two
continue through the range P ∈ (−2, 2). (One may employ normal-form analysis of
the type in §2.2 to show that (1.8) has two modulated solitary-wave solutions for
P ∈ (2 − ε2, 2), where ε2 is a small, positive, real number (Grimshaw, Malomed &
Benilov 1994).) Upon increasing P from P = −2, they found that every other branch
reaches a turning point at a value P? < 2 of P (different for each branch) beyond
which it ceases to exist. Decreasing P from this critical value, one may return to
P = −2 along a different branch, arriving at P = −2 with an orbit of a different
modality. One says that the two branches of homoclinic solutions coalesce at P?.
Buffoni et al. (1996a, §4) support their numerical observations with geometric argu-
ments concerning the intersection of the unstable manifold of the zero equilibrium
and the symmetric section {(u, u′, u′′, u′′′) ∈ R4 : u′ = u′′′ = 0}. These arguments have
since been put on a rigorous mathematical footing by Knobloch (1994) for a general
reversible or conservative dynamical system. Both papers conclude that a coalescence
of two symmetric or asymmetric homoclinic orbits at a value P? ∈ (−2, 2) of P is a
codimension-one event, and that certain observed coalescences of asymmetric orbits
are associated with bifurcations of two asymmetric orbits from a symmetric orbit.

3.1. Critical-point theory

Define a functional J on the Sobolev space H2(R) by the formula

J(r) =
1

2

∫
R

{
2
15
|r′′|2 + b|r′|2 + ar2 − rr′2 + r3

}
dt (3.1)

and observe that the homoclinic solutions of (1.1) are precisely the critical points of
J , that is the points r ∈ H2(R) such that J ′(r) = 0. For use in the theory below, let
us note that

〈J ′(r), r〉 =

∫
R

{
2
15
|r′′|2 + b|r′|2 + ar2 − 3

2
rr′2 + 3

2
r3
}

dt,

〈J ′′(r)r, r〉 =

∫
R

{
2
15
|r′′|2 + b|r′|2 + ar2 − 3rr′2 + 3r3

}
dt,

where 〈· , ·〉 denotes the H2(R)-inner product. One has the identities∫
R

{
2
15
|r′′|2 + b|r′|2 + ar2

}
dt = 6J(r)− 2〈J ′(r), r〉, (3.2)

J(r) = 1
2
〈J ′(r), r〉 − 1

4
K(r), (3.3)

〈J ′′(r)r, r〉 = 〈J ′(r), r〉+ 3
2
K(r), (3.4)

where

K(r) =

∫
R

{
−rr′2 + r3

}
dt.

Let us begin by showing that 0 is a strict local minimum of J for values of a and
b in the region C ∪ R in figure 1. Here the first step is to exhibit a positive constant
c1 such that ∫

R

{
2
15
|r′′|2 + b|r′|2 + ar2

}
dt > c1 ‖r‖2

H2(R) .

For a, b > 0 one can take c1 = min(2/15, b, a); to deal with the remaining case a > 0,
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−(8a/15)1/2 < b 6 0 observe that

2
15
k4+bk2+a= 2

15
k4 +

(
2a/15

)1/2
k2 + a+

[(
15/2a

)1/2
b− 1

] (
2a/15

)1/2
k2

> 2
15
k4 +

(
2a/15

)1/2
k2 + a+ 1

3

[(
15/2a

)1/2
b− 1

][
2
15
k4+

(
2a/15

)1/2
k2+a

]
= 1

3

[
2 +

(
15/2a

)1/2
b
] [

2
15
k4 +

(
2a/15

)1/2
k2 + a

]
.

It follows that∫
R

{
2
15
|r′′|2 + b|r′|2 + ar2

}
dt

=

∫
R

{
2
15
k4 + bk2 + a

}
|r̂|2dk

> 1
3

(
2 +

(
15/2a

)1/2
b
)∫

R

{
2
15
k4 +

(
2a/15

)1/2
k2 + a

}
|r̂|2dk

= 1
3

(
2 +

(
15/2a

)1/2
b
)∫

R

{
2
15
|r′′|2 +

(
2a/15

)1/2 |r′|2 + ar2
}

dt,

where r̂ denotes the Fourier transform of r, and one can take

c1 = 1
3

(
2 +

(
15/2a

)1/2
b
)

min
(

2
15
,
(
2a/15

)1/2
, a
)
.

The estimates ∣∣∣∣∫
R

r3 dt

∣∣∣∣ 6 ∫
R

|r|3 dt 6 c2 ‖ r ‖3
H2(R) (3.5)

and ∣∣∣∣∫
R

rr′2 dt

∣∣∣∣ 6 ∫
R

|r|r′2 dt

6

(∫
R

r2 dt

)1/2(∫
R

r′4 dt

)1/2

6 c3 ‖ r ‖L2(R)‖ r′ ‖2
H1(R)

6 c3 ‖ r ‖3
H2(R), (3.6)

where c2, c3 are positive constants, are obtained using the Cauchy–Schwarz inequality
and the Sobolev embedding theorem. It follows from (3.5), (3.6) that the last two
terms on the right-hand side of (3.1) are O(‖r‖3

H2(R)) as r → 0, and one concludes that

0 is a strict local minimum of J for values of a and b satisfying a > 0, b > −(8a/15)1/2.
Choosing r ∈ H2(R) such that K(r) < 0, one finds that

lim
s→∞

s−2J(sr) = lim
s→∞

[
1

2

∫
R

{
2
15
|r′′|2 + b|r′|2 + ar2

}
dt+ 1

2
sK(r)

]
= −∞.

The value of J on any ray {sr : s ∈ [0,∞)} with K(r) < 0 therefore initially increases
from 0 before reaching a maximum and eventually becoming negative. Let Γ be the
set of all paths whose images have this property, so that

Γ = {γ ∈ C([0, 1], H2(R)) : γ(0) = 0, J(γ(1)) < 0}.
The number

c = inf
γ∈Γ

max
s∈[0,1]

J(γ(s))
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therefore represents the height of the ‘lowest’ path from 0 to a function which realizes
a negative value of J . Notice that c > 0 because 0 is a strict local minimum of J . It
follows from the mountain-pass lemma (Brezis & Nirenberg 1991, p. 943) that there is
a Palais–Smale sequence {un} such that J(un)→ c and J ′(un)→ 0 as n→∞. One may
now apply a concentration-compactness argument along the lines of that given by Coti
Zelati, Ekeland & Séré (1990) to deduce the existence of a non-trivial critical point
r? of J such that J(r?) 6 c. It follows that equation (1.1) has at least one homoclinic
solution in the parameter region C ∪R.

The next step is to introduce the natural-constraint manifold

M = {r ∈ H2(R) : 〈J ′(r), r〉 = 0, K(r) < 0}
= {r ∈ H2(R) : 〈J ′(r), r〉 = 0, J(r) > 0};

here the first and second lines are equal because of (3.3). Equation (3.2) shows that
all non-zero critical points r of J (in particular r?) satisfy J(r) > 0 and therefore lie
on M. Now take any r ∈ M and consider the path h ∈ C([0, 1], H2(R)) given by
h(s) = Asr for a sufficiently large value of A. This path belongs to Γ , and the fact that
〈J ′′(r)r, r〉 < 0 (see equation (3.4)) shows that J(h(s)) reaches a unique maximum at
s = 1/A. It follows that J(r) > c for all r ∈M; in particular J(r?) > c. One concludes
that J(r?) = c, so that r? is a global minimizer of J on M.

The facts that r? is the unique maximizer of J on the ray passing through r? and
that r? is a global minimizer of J on M are precisely the hypotheses required to apply
the theory of Buffoni & Séré (1996, pp. 290–293) in the parameter region C. Under
the additional hypothesis that r? is isolated (up to time translations) in H2(R), the
theory asserts the existence of a countably infinite family of multi-bump solutions.
The nth member of this family resembles n copies of the primary orbit r? separated
by small-amplitude displacements and with exponentially decaying tails. Notice that
if r? is not isolated there must also be infinitely many distinct homoclinic solutions.
In either case equation (1.1) has infinitely many geometrically distinct homoclinic
solutions in the parameter region C.

3.2. Numerical computations

Figure 3 depicts numerical computations of six symmetric homoclinic solutions to
equation (1.1), namely the primary solution and the solutions labelled 2(1) to 2(5)
for a = 1, b = −0.5. Notice that these parameter values are well away from the
region S1 in figure 1 where the theory of §2.3 applies. Figure 4 shows bifurcation
diagrams for each solitary wave in figure 3; here b is fixed at = −0.5 and a is allowed
to vary. Observe that only two waves, the primary and 2(2) solutions, survive to
reach the curve C2 (at a = 15/32 for b = −1/2). The primary and 2(2) solutions are
depicted in figure 5 for a variety of values of a. (Here, and elsewhere in the remainder
of this paper, such symmetric solitary waves are drawn only up to their point of
symmetry; the origin of t is chosen for numerical convenience.) From figures 4 and
5 it is apparent that the amplitudes of both solutions decrease monotonically with a
and reach zero at the curve C2; in the vicinity of C2 they are the envelope solitary
waves described by the normal-form theory of §2.2. Every other solution branch
reaches a limit point before reaching the curve C2, where it coalesces with another
branch.

Figures 6 and 7 show the behaviour of solutions on the 2(1) and 2(4) branches.
As one follows the branches to their limit points and back along the second branch,
the solutions begin to grow in amplitude again. In the case of the 2(1) branch, a
symmetrically related pair of oscillations develop into a secondary pair of troughs,
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Figure 3. Primary and five bi-modal solitary waves for a = 1, b = −0.5: (a) primary; (b) 2(1);
(c) 2(2); (d) 2(3); (e) 2(4); (f) 2(5).
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Figure 4. Bifurcation diagram with a of primary and five bi-modal solitary waves of depression
for fixed b = −0.5.

so that the solution becomes a 4-modal orbit (figure 6b). Along the 2(4) branch,
the oscillation at the point of symmetry develops into a secondary trough, and the
solution becomes a tri-modal orbit (figure 7b). The results presented in figures 4–7 are
qualitatively the same as those found by Buffoni et al. (1996a) for equation (1.8), who
also presented a detailed discussion of the rules governing which pairs of branches
coalesce. These rules appear to be the same for the present equation, for which
decreasing a corresponds to increasing P in equation (1.8). Numerical experiments
for large values of a reveal no new behaviour. As a is increased, all troughs are
observed to deepen indefinitely.

Figure 8 shows bifurcation diagrams for the same solitary waves when a is fixed
(at 1) and b is allowed to vary. As b is increased, one obtains behaviour which is
qualitatively similar to that shown in figure 4. Only two waves, the primary and
2(2) solutions, survive to reach the curve C2 (at b = −(8/15)1/2 for a = 1). Every
other solution branch reaches a limit point before reaching C2, where it coalesces
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Figure 5. (a) Solutions on the primary branch for b = −0.5 and the given values of a;
(b) solutions on the 2(2) branch for the same parameter values.

with another branch; the labelling of the pairs of coalescing orbits is found to be the
same as before. Further numerical experiments reveal that the behaviour of the 2(2)
branch changes for larger values of a. This difference is explained in detail in §5.2.

Figure 9 shows the results of numerical experiments in which bimodal waves are
continued in a and b until limit points are reached; at these points the bimodal
orbits coalesce with other multi-modal orbits. The dashed lines are the loci of such
points. Observe that the curve of limit points for the 2(n) waves, where n is odd, lies
closer to C2 for larger values of n; further numerical experiments indicate that this
phenomenon continues as n increases. A similar accumulation of limit-point curves on
C2 is observed numerically for the 2(n) waves, where n is even, the 2(2) and 2(4) waves
being exceptions to this rule. For example, when a = 1 the 2(6) and 2(8) waves reach
their limit points with respect to b at −0.670263 and −0.680774. (These branches are
not depicted in figures 4, 8 or 9 in order to keep those diagrams uncluttered; the
2(2) branch is also not shown in figure 9 for reasons explained in §5.2.) Note that
a similar pattern involving separate accumulation of limit points corresponding to
odd and even bi-modal solutions was found by Buffoni et al. (1996a) for equation
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Figure 6. (a) Solutions on the 2(1) branch for b = −0.5 and the given values of a up to the limit
point at a = 0.5128; (b) solutions on the other branch coalescing at the limit point.

(1.8), who also gave a partial explanation in terms of the geometry of the stable and
unstable manifolds.

The next step is to consider the situation when a is kept fixed and b is increased until
one encounters the curve C1 (at b = (8/15)1/2 for a = 1). The behaviour in numerical
experiments is observed to be the same as that described by the rigorous theory in
§2.3. The primary solution survives as one crosses C1; the eigenvalues become real, so
that the tails of the wave become monotone (see figure 10a). The large troughs of all
other solitary waves separate with increasing speed (see figure 10b for the 2(2) branch).
There are numerical difficulties in following branches of multi-modal solutions all the
way back to (8/15)1/2. These difficulties, reported by Champneys & Spence (1993),
are connected with the fact that the speed of trough separation becomes infinite in
the limit. Nevertheless, the numerical evidence strongly supports the hypothesis that
the bifurcation phenomenon described in §2.3 occurs not only near the origin but
whenever one crosses the curve C1 from right to left. On the right of the curve C1

the primary solution is connected as an open phenomenon to the solitary wave of
depression that bifurcates from C4 (see §2.1).

Notice that there are also asymmetric multi-modal solutions in the parameter
regime. Figure 11 shows numerical computations of four tri-modal solitary waves
(those labelled 3(2,1), 3(2,2), 3(2,3) and 3(2,4)) at a = 1, b = −0.5.
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Figure 7. (a) Solutions on the 2(4) branch for b = −0.5 and the given values of a up to the limit
point at a = 0.5541; (b) solutions on the other branch coalescing at the limit point.
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Finally, turning to the full water-wave problem, let us remark that Dias, Menasce &
Vanden-Broeck (1996) have found similar global existence properties for multi-modal
solitary waves of depression; in particular they discovered a phenomenon similar to
the coalescence between the 2(1) and 4(2,1,2) branches presented above.

4. Solitary waves of elevation – isolated solution branches
Let us begin by considering the reduced equation (1.4) in the case a, b < 0. Writing

a = −15b2µ/2, where µ is a positive, real number, and introducing the scaled variables

u(T ) =
1

5b2µ
r(t), T =

(
−15bµ

2

)1/2

t, (4.1)

one obtains the equation

µuiv + ü− u+ u2 = 0, (4.2)

in which the dot denotes differentiation with respect to T . (Notice that (4.2) may also
be obtained from the one-parameter equation (1.9) for P > 0 using the scaling

µ =
1

P 2
, U(T ) = −u(t), T =

(
1

P

)1/2

t,

in which u and t denote the variables in (1.9).) The question of the existence
of homoclinic solutions to (4.2) or (1.1) in the parameter region S3 in figure 1 is
an example of ‘asymptotics beyond all orders’: in order to determine whether a
series approximating the solution converges one has to examine exponentially small
terms (Kichenassamy & Olver 1992, §8). Hammersley & Mazzarino (1989), Amick &
McLeod (1992) and Eckhaus (1992a, b) examined equation (4.2) and proved that it has
no homoclinic solutions for sufficiently small values of µ. The existence of generalized
solitary-wave solutions for sufficiently small values of µ has been established by
Amick & Toland (1992c) (see also Hunter & Scheurle 1988 and Boyd 1991). These
results apply to equation (1.9) for large, positive values of P and to equation (1.4) for
small, negative values of a and negative values of b (the region S3 in figure 1.)
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Figure 10. Solutions on (a) the primary; (b) the 2(2) branch for a = 1 and the given values of b.

Equation (1.4) has also been studied for larger values of µ. Amick & McLeod
(1992) showed that (4.2) has no symmetric homoclinic solution for any positive value
of µ. For positive values of µ the linearized version of (4.2) has a saddle-centre, and
it is known (Koltsova & Lerman 1995) that symmetric and asymmetric homoclinic
solutions to such systems are respectively codimension-one and codimension-two
phenomena. These facts lead one to conjecture that equation (4.2) has no homoclinic
solution for any positive value of µ; Champneys & Lord (1997) present some
numerical evidence to support this conjecture. (The main results of Champneys &
Lord are computations of generalized solitary-wave solutions to (4.2) for larger values
of µ, together with numerical evidence for multi-modal versions of these solutions
which have a rich bifurcation structure.) Observe that these results apply to equation
(1.9) for positive values of P and to equation (1.4) for negative values of a and b.

The above discussion indicates that to find homoclinic solutions to (1.1) in the
parameter regime S3 in figure 1 one has to study it in its original form as a two-
parameter equation. Kichenassamy & Olver (1992) present a criterion for a general
higher-order model equation to possess an explicit solution of the form r(t) = αsech2λt.
Using their criterion, one finds that

r(t) = 3
(
b+ 1

2

)
sech2

([
3
4
(2b+ 1)

]1/2
t
)

(4.3)
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Figure 11. Four tri-modal solitary waves of depression for a = 1, b = −0.5: (a) 3(2,1); (b) 3(2,2);
(c) 3(2,3); (d) 3(2,4).

defines an exact solution of (1.1) along the curve

a = 3
5
(2b+ 1)(b− 2), b > − 1

2
. (4.4)

Numerical experiments indicate that equations (4.3), (4.4) represent the first of a
countable number of branches of homoclinic solutions to (1.1), the loci in the (b, a)-
plane of which are parameterized by b. Each branch has the same qualitative features
as the first (see figure 12). The nth branch Bn begins at (b, a) = (b−n , 0) (with a
bifurcation of a homoclinic orbit from the zero solution), reaches a turning point
and enters the region a > 0 at (b, a) = (b+

n , 0). (Here 0 > b−1 > b−2 > · · · and
0 < b+

1 < b+
2 < · · ·.) Figure 13 shows numerical computations of the homoclinic

solutions on the first few branches at b = b+
1 , b+

2 , b+
3 and b+

4 . The solutions
have the basic profile shown in figure 13(a) with an increasing number of small
oscillations superimposed; they are all positive, symmetric and decay exponentially
and monotonically to zero as t→ ±∞.

Recall that equation (1.4) has no homoclinic solutions in the present parameter
regime. To show how this fact is consistent with the results of the numerical experi-
ments in this section, let us briefly return to the scaled equation (1.6), to which the
above calculations apply when ε = 1. Figure 14 shows the effect of varying ε upon
the solutions computed in figure 13; the values of b−n and b+

n , n = 1, 2, 3, 4, increase, as
do the amplitudes of the solutions. Further numerical experiments indicate that the
branches in figure 12(a) retain their qualitative shape as ε is decreased but become
bigger, with larger values of b−n and b+

n , n = 1, 2, 3, 4. As ε → 0 one finds that b−n ,
b+
n and the amplitudes of the solutions tend to infinity. This behaviour is of course

consistent with the fact that the limit equation (1.4) has no homoclinic solutions.
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Figure 12. Bifurcation diagrams showing the branches B1, B2, B3, B4 of solitary waves of elevation
for a < 0: (a) loci of branches in the (b, a)-plane; (b) maximum of r versus b.

5. Solitary waves of elevation – global phenomena
5.1. Fast- and slow-decaying solitary waves

Let us now return to equations (4.3) and (4.4), which define the branch B1 of explicit
solutions to equation (1.1). When −1/2 < b < 2 its locus lies in the region a < 0,
where the linearized version of (1.1) has two real eigenvalues ±λ1(a, b) and two purely
imaginary eigenvalues ±λ2(a, b). As b is increased through 2 the locus enters the
region R above C4 and to the left of C1 in figure 1; the purely imaginary eigenvalues
±λ2(a, b) decrease in magnitude to zero (when b = 2) and then become real with
|λ2| < |λ1|. Observe that solitary waves on the branch decay exponentially to zero at
infinity like exp(−|λ1|t).

Homoclinic solutions to a Hamiltonian system whose linearization has four real
eigenvalues ±λ1, ±λ2 with |λ2| < |λ1| are open phenomena, but generically they decay
exponentially to zero at infinity like exp(−|λ2|t). For b > 2 equations (4.3), (4.4)
therefore distinguish a branch of fast-decaying solitary waves (of elevation). Similar
remarks apply to the other branches of solitary waves computed in §4. Figure 15
shows numerical computations of these branches; as one moves along each branch,
the solutions grow in amplitude but retain the same qualitative wave shape. Recall
that there are also generic slow-decaying solitary waves (of depression) in this region
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which are associated with the bifurcation of the Korteweg–deVries solitary wave of
depression discussed in §2.1. Varying a single parameter, one therefore expects to be
able to follow a branch of generic, slow-decaying solitary waves through a branch of
fast-decaying solitary waves. The generic solution on the former branch undergoes a
codimension-one orbit-flip bifurcation (Sandstede 1993) as it passes through the latter
branch. In general this bifurcation can take place either in the stable or in the unstable
manifold. In the unstable manifold, an orbit-flip bifurcation occurs when the tail of
the generic homoclinic solution flips from one direction to the opposite direction on
the eigenvector corresponding to the smallest positive eigenvalue (figure 16). Similar
remarks apply for the stable manifold. Note, however, that for symmetric homoclinic
orbits in reversible systems orbit-flip bifurcations occur simultaneously in the stable
and unstable manifolds.

Let us now verify the above remarks for equation (1.1) in the parameter regime
R. Figure 17 shows a branch of generic, slow-decaying solitary waves of elevation
passing through the branch B1 of fast-decaying solitary waves of elevation for fixed
a = 1. Starting at b = 4, one may follow the branch of slow-decaying solitary
waves through B1 (at b = (9 + (345)1/2)/12) and then through the curve C1 (at
b = (8/15)1/2) to enter the region C in figure 1. Here its tail becomes oscillatory
(but still exponentially decaying) because of the change in eigenvalue structure. The
branch reaches a limit point at b = 0.108965, turns, and crosses C1 to enter the region
R again. At b = 0.108965 one therefore observes a coalescence of two branches
of solitary waves of elevation; numerical experiments indicate that both branches
may be followed to arbitrarily large values of b. For future reference, let us refer to
solutions on the first branch as type E1 and those on the second as type E2.
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Figure 18 is the analogue of figure 17 for a branch of generic, slow-decaying solitary
waves of elevation passing through the branch B2 of fast-decaying solitary waves of
elevation. The observed behaviour is qualitatively the same as that of the first branch,
except that it does not cross the curve C1; the limit point is at b = 2.49259.

5.2. Interactions with solitary waves of depression

Figure 19 shows the result of a numerical experiment in which solitary waves of
elevation of type E1 are continued in a and b until a limit point is reached. The
dashed line L is the locus of such limit points; note the cusp at a = a1 ≈ 1.07 and the
local maximum to the right of the cusp at a = a2. Limit points on the curve to the
right of the cusp represent coalescences between solitary waves of type E1 and E2,
as discussed in §5.1. To describe the phenomenon represented by limit points to the
left of the cusp, it is necessary to recall some of the results in §3 concerning solitary
waves of depression.

The numerical evidence in §3 indicates that the bifurcation phenomenon described
in §2.3 occurs whenever one crosses the curve C1 from right to left. Fixing a and
allowing b to decrease through (8a/15)1/2, one observes a slow decaying solitary wave
of depression bifurcate into a plethora of multi-modal solitary waves of depression.
When a < a1 the bifurcation picture for −(8a/15)1/2 < b < (8a/15)1/2 is as shown
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in Figure 8; all the branches of multi-modal solitary waves of depression coalesce in
pairs with the exception of the primary and 2(2) branches. Those branches connect
with the branches of envelope solitary waves of elevation and depression which
bifurcate from the zero solution at b = −(8a/15)1/2. When a > a1 the primary
branch connects with the branch of envelope solitary waves of elevation as before.
The 2(2) branch, however, coalesces with the E1 branch at its limit point, and
the E2 branch connects with the branch of envelope solitary waves of depression
(figure 20).

Figure 19 shows there are three limit points with respect to b for a ∈ (a1, a2).
Figure 21 illustrates the results of numerical experiments to investigate how the
2(2) and E2 branches interchange as continuations of the enevlope solitary waves of
depression bifurcating from zero at C2. This unfolding is consistent with the theory of
perturbed pitchfork bifurcations and hysteresis points (Golubitski & Schaeffer 1985,
Chapter III).

5.3. A plethora of solitary waves of elevation

The fact that one can numerically follow the E1 branch into the region C is strong
evidence that orbits on this branch are transverse in the sense explained in §2.3. As
in §2.3, one may then appeal to the theory by Devaney (1976) to obtain the existence
of infinitely many multi-modal solitary waves. The overall structure of the set of
these homoclinic solutions is the same as that of the set H described in §2.3; here,
however, the solutions are waves of elevation. Bearing the numerical evidence in
mind, one may conjecture that there are infinitely many multi-modal solitary waves
of elevation in the region above L and to the left of C1. Further numerical evidence
for this conjecture is given in figure 22, which shows numerical computations of
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the solution of type E1 and four associated bi-modal waves of elevation at a = 2,
b = 0.5. It should be possible to repeat the numerical experiments in §3 for the present
multi-modal solitary waves of elevation; one would expect a bifurcation structure
involving coalescences of branches at limit points. That investigation is, however, not
undertaken here.

Observe that Devaney’s result can be applied to any transverse homoclinic orbit
in the region C. For example, one would therefore expect to find multi-modal orbits
that resemble multiple copies of solitary waves of type E2.



Solitary-wave solutions to a two-parameter model 223

r(t)

0.6

t/20.0

5

0.80.4

(c)

0 0.4

t/20.0

6

0.60.2

1

(d )

0.8 1.0

–1.5

||r||

–0.5

b

2.0

2.5

0–1.0

(a)

0.2

t/20.0

1.0

1.5

0

0

(b)

0.6 1.0

1.5

5

0
1.0

r(t)
–0.5

–1.0

0

0.20

4

0

–2

r(t)

0.5

–1.5

0.4 0.8

1.0

1.0

0.5

2(2)

E2

E1 0.5

–2.0

–0.5

0.0

0.5

–0.6955

3

2

1

–1

0.5

0.0

–0.3251
–0.5

–0.6955

4

3

2

–1

–1.0328
–1.0
–0.5

0.0

0.5

Figure 20. (a) Bifurcation diagram with b for fixed a = 2 showing the primary and 2(2) branches
of solitary waves of depression together with the E1 branch of solitary waves of elevation, where
‖ r ‖ is a scaled L2-norm of the vector (r, r′, r′′, r′′′); (b) solutions on the 2(2) branch up to the limit
point at b = −0.6955; (c) solutions on the E1 branch, which coalesces with the 2(2) branch at the
limit point; (d) solutions on the E2 branch.

||r||

b

(a)

2(2)

E1

E2

b

(b)

2(2)

E1

E2

b

(c)

2(2)

E1

E2

Figure 21. Schematic representation of bifurcation diagrams with b for (a) a < a1;
(b) a1 < a < a2; (c) a > a2.

5.4. Multi-crested solitary waves with non-oscillatory tails

Sandstede, Jones & Alexander (1997) have recently developed the theory of orbit-flip
bifurcations in reversible systems. Under the generic hypotheses that a transverse
orbit passes through the fast direction with non-zero speed as a parameter is varied
(figure 16) and that the orbit flip does not take place in the adjoint dynamical system,
they showed that there are infinitely many multi-crested waves on one side of the
fast-decaying branch that resemble 2, 3, . . . copies of the primary orbit. In contrast
to the multi-modal orbits associated with Devaney’s construction (§§2.3 and 5.3),
there is generally only one orbit for each N > 1. As it stands, the theory is not
applicable to equation (1.1) since for Hamiltonian systems an orbit flip must take
place in the dynamical system and its adjoint simultaneously (Sandstede et al. 1997,
Remark 2.1). However, work is in progress upon a Hamiltonian version of the theory,
and preliminary results indicate that in this case multi-crested waves are to be found
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either on both sides of the fast-decaying solution or not at all; the present system
falls into the first category.

The above result is supported by numerical computations. Figure 23 depicts four
solutions at parameter values to the left of B1 in figure 15(a). These solutions resemble
multiple copies of the primary solution associated with B1 to the left of its orbit flip.
Figure 24, on the other hand, depicts four solutions at parameter values to the right
of B1 but to the left of B2. The first three resemble multiple copies of the primary
solution associated with B1 to the right of its orbit flip; note that, in contrast to the
waves in figure 23, these solutions are strictly positive. The fourth solution (figure 24d)
resembles two copies of the primary solution associated with B2 to the left of its orbit
flip; this solution does become negative.

Figures 25(a) and 25(b) show how the two-crested solutions shown in figures 23(a)
and 24(a) change as the parameter b is varied; for a = 3 the orbit flip occurs at
b = (3 + (65)1/2)/4. Both figures are consistent with a solution whose two large
peaks move apart to infinity as an orbit flip is approached. Moreover, it is possible to
continue the branch of solutions in figure 25(b) leftwards into the region C of complex
eigenvalues. This fact suggests that the solution is transverse and that Devaney’s
theory applies to give infinitely many multi-modal solutions; these solutions resemble
multiple copies of a two-crested primary wave separated by small oscillations and
with oscillatory decaying tails.

6. Conclusion
A range of analytical and numerical results has been presented concerning the

global bifurcation picture for homoclinic solutions to equation (1.1). The main features
of these results are summarized in figure 26. The most surprising result is the strong
evidence that there are infinitely many solitary waves for parameter values in the
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region R where there are four real eigenvalues; one would naturally expect uniqueness
here (as Buffoni et al. 1996a prove for the simpler equation (1.8)). Let us also briefly
mention a result by Holmes (1980), namely an existence theory for an infinite family of
multi-bump homoclinic solutions in such a parameter regime. The central hypothesis
in the theory is the existence of two distinct, slow-decaying homoclinic orbits whose
asymptotic behaviour satisfies certain conditions; the solutions resemble multiple
copies of these primary waves in an alternating sequence. To the right of B1, the
waves of type E1 and the primary wave of depression found in §3.2 appear to be
candidates for the primary waves in Holmes’s theory, and the waves of type E2 might
arise as a consequence.

It remains to provide analytical results for some of the numerical evidence presented
in this article. Transversality results are required for the application of Devaney’s
construction in several places, and delicate analysis is required to verify the example
of ‘asymptotics beyond all orders’ described in §4. Work is in progress to obtain a
rigorous theory for the orbit-flip phenomenon in §5.4.

An obvious issue not treated in this paper concerns the stability of the solitary waves
as solutions of the partial differential equation (1.2). This issue has been addressed
by Buryak & Champneys (1997) and Malomed & Vanden-Broeck (1996) for multi-
modal solutions of the fifth-order KdV equation whose solitary waves solve (1.4).
Buryak & Champneys considered the asymptotic limit of wide separation of the two
troughs and showed that half the bi-modal solitary waves are stable and half unstable;
Malomed & Vanden-Broeck showed numerically that the primary and simplest bi-
modal waves can collide almost like solitons. Finally, Marchant & Smyth (1996)
have recently presented numerical results concerning interactions between uni-modal
solitary-wave solutions to a class of higher-order model equations.

This paper is dedicated to the memory of T. B. Benjamin FRS, who supervised us
both when we were postgraduate students at the University of Oxford. We should
like to thank Björn Sandstede (WIAS, Berlin) for explaining his results on orbit-flip
bifurcations in reversible systems.
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